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Introduction

The drug discovery and development process can be interpret-
ed as a long story of many failures with rare—but crucial—suc-
cess stories interspersed, be they due to serendipity or rational
planning. From the first stages of clinical trials only about 11%
of compounds make it to registration.[1] Many more com-
pounds synthesized during the lead optimization phase fail—
however, at lesser cost and with a considerably higher proba-
bility for correction of the failure. In a study comprising new
chemical entities (NCEs) admitted to the market between 1975
and 1999, it was found that out of 548 NCEs, 45 (8.2%) ac-
quired black box warnings and 16 (2.9%) were withdrawn
from the market.[2] Reasons for failures are varied and have
changed over time, with ADME/PK issues dominating in the
1990s.[3] More recently, the integration of both computational
and experimental ADME/PK models into the drug discovery
process tipped the balance leaving efficacy and safety the two
major hurdles, each responsible for about 30% of attrition
during late discovery and early clinical phases.[1] Recent exam-
ples of compounds which where withdrawn because of rela-
tively rare but serious ADRs include cerivastatin (Lipobay)[4]

and rofecoxib (Vioxx).[5] If at all possible, late-stage failures due
to unacceptable side-effect profiles should be avoided as early
as possible to reduce the cost of the process and secure clini-
cally safe drugs for the benefit of the patients. The further
along the drug discovery and development pipeline a poten-
tial drug candidate travels, the exponentially higher the costs.
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Preclinical Safety Pharmacology (PSP) attempts to anticipate ad-
verse drug reactions (ADRs) during early phases of drug discovery
by testing compounds in simple, in vitro binding assays (that is,
preclinical profiling). The selection of PSP targets is based largely
on circumstantial evidence of their contribution to known clinical
ADRs, inferred from findings in clinical trials, animal experiments,
and molecular studies going back more than forty years. In this
work we explore PSP chemical space and its relevance for the
prediction of adverse drug reactions. Firstly, in silico (computa-
tional) Bayesian models for 70 PSP-related targets were built,
which are able to detect 93% of the ligands binding at IC50�
10 mm at an overall correct classification rate of about 94%. Sec-
ondly, employing the World Drug Index (WDI), a model for ad-
verse drug reactions was built directly based on normalized side-
effect annotations in the WDI, which does not require any under-
lying functional knowledge. This is, to our knowledge, the first at-
tempt to predict adverse drug reactions across hundreds of cate-
gories from chemical structure alone. On average 90% of the ad-

verse drug reactions observed with known, clinically used com-
pounds were detected, an overall correct classification rate of
92%. Drugs withdrawn from the market (Rapacuronium, Supro-
fen) were tested in the model and their predicted ADRs align well
with known ADRs. The analysis was repeated for acetylsalicylic
acid and Benperidol which are still on the market. Importantly,
features of the models are interpretable and back-projectable to
chemical structure, raising the possibility of rationally engineering
out adverse effects. By combining PSP and ADR models new hy-
potheses linking targets and adverse effects can be proposed and
examples for the opioid m and the muscarinic M2 receptors, as
well as for cyclooxygenase-1 are presented. It is hoped that the
generation of predictive models for adverse drug reactions is able
to help support early SAR to accelerate drug discovery and de-
crease late stage attrition in drug discovery projects. In addition,
models such as the ones presented here can be used for com-
pound profiling in all development stages.
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It would therefore be advantageous to predict the likelihood
of failure as early as possible in the process. This includes in vi-
tro preclinical profiling during lead selection and optimization.
One might even extend the idea to library design. Whereas ad-
verse drug reactions differ in their seriousness, even compara-
tively mild side effects such as headache can lead to noncom-
pliance of the patient and thus influence therapy outcome to
a much larger extent then expected. Therefore, knowledge
about possible adverse reactions is an asset in the earliest
stages of a drug discovery project.
At present, regulatory guidelines require extensive in vivo

studies[6] which refer to safety pharmacology/risk assess-
ment.[7–9] However, these studies are costly and time demand-
ing and most importantly they enter the project flowcharts at
late stages and with low capacity. The lead optimization phase
and even earlier, lead selection or library design phases need a
rapid method to assess structures, and more importantly SARs
for the prediction and possible elimination of ADRs. In silico
and in vitro models fit the required criteria but depending on
the particular aim, the best approach differs in each case.
Today, various formats of in vitro preclinical safety pharma-

cology (PSP) are routinely employed in the pharmaceutical in-
dustry.[7,8,10, 11] Indeed, it is employed in addition and ahead of
safety pharmacology, required by regulatory authorities.[6]

Safety pharmacology describes the comprehensive identifica-
tion of liabilities of a small number of compounds, whereas
PSP embodies the routine screening of a larger number of
compounds against comparatively inexpensive, yet predictive
assays. Predictive refers to correct identification of hits at any
target included in a large assay set (a safety driven selection of
80–120 receptors, nuclear receptors, enzymes, transporters,
and ion channels) which could potentially produce certain
ADRs in the clinic. However, the picture is complicated by the
fact that many compounds have some level of pharmacologi-
cal promiscuity and bind to various targets. Therefore it is an
intriguing scientific challenge to develop predictive methods
to capture adverse drug reactions reliably with a comparatively
small number of compounds at a reduced number of targets
to be screened. This step is difficult in practice as pathways
may be regulated by different targets, leading to the same
phenomenological outcome despite distinct underlying molec-
ular mechanisms. In some cases strong links between molecu-
lar targets and effects were nonetheless established, such as
the link between the human ether-a-go-go-related gene
(hERG) potassium channel and Torsade de Pointes or long-QT-
syndrome.[12,13] The hERG-related K+ channel quickly became
one of those targets routinely screened in safety pharmacology
and also required by regulatory agencies to be screened.[6,9]

In general terms, there are compounds with two major pre-
clinical profiles emerging from published studies: 1) com-
pounds or structural classes which show high promiscuity and
bind with various affinity to a large number of unrelated tar-
gets and 2) compounds or structural classes which have a high
affinity to a specific class of targets or even only a single
target. Following this division, one way to interpret pharmaco-
logical profiling results is to evaluate activity against a particu-
lar target. This approach is feasible where strong links between

particular targets and undesired side effects are established.
The hERG-related K+ channel,[14–17] the 5-HT2B receptor,[18] or
the PXR nuclear hormone receptor[19] are typical examples
which fall into this category.
The second way to analyze profiling data is to look at ligand

promiscuity.[20] Promiscuous ligands are by their very nature
more likely to show undesired and often ill-defined side ef-
fects. Ligand promiscuity should be distinguished from the
phenomenon of frequent hitters, part of which has been ex-
plained by the formation of micelles,[21] and which has been
subject to in silico studies.[22,23] The question of whether selec-
tivity is necessarily an advantage or disadvantage depends on
the components of promiscuity and their relationship to the
indication, and therefore needs to be considered separately.
Drugs hitting multiple desired targets also possess certain ad-
vantages.[24,25] Ligand promiscuity has recently been the sub-
ject of further investigation[26] with the aim of establishing gen-
eral guidelines for what leads ligands to bind to a large
number of targets. Taking the Novartis in-house safety screen-
ing data, more than 20% of all ligands were found to bind to
10–20% of the profiling targets (7–14 in absolute numbers)
with an IC50<5 mm (though this is biased by projects dealing
with promiscuous ligands that tend to submit larger numbers
of compounds for profiling). Overall it was found that selective
ligands are, on average, more hydrophilic and smaller, and that
key selectivity features exist which virtually rule out promiscui-
ty, such as carboxylic acid groups. Whereas the effect can
partly be explained by thermodynamic concepts (lipophilic li-
gands are squeezed out of the water, no matter what the bind-
ing partner is), this topic is still actively being investigated be-
cause of its paramount importance for the design of selective
ligands.
Previous research in in silico pharmacology has been mainly

concerned with the prediction of individual adverse effects
such as hERG inhibition,[14,27] blockage of one of the P450 sub-
types,[28] or PXR nuclear hormone receptor binding.[18] Model-
ing GPCR antitarget pharmacophore models of the a1a adre-
noreceptor, the 5HT2A serotonin receptor, and the D2 dopa-
mine receptor were published.[29] The incorporation of multiple
in silico models into early discovery stages has also been pro-
posed.[30] Whereas most models have been ligand-based, fur-
ther approaches have been presented which take the target
structure into account. One effort which employed docking to
distinguish between the selectivity of different kinases showed
very high specificity and sensitivity.[31] Still, this approach is lim-
ited to certain targets. On the contrary, the present empirical
model is similar to the BioPrint approach[32] and work per-
formed by Pfizer[33] which considered multiple targets simulta-
neously. The latter approach has recently been extended to
the prediction of drug side effects[34] in combination with hier-
archical clustering. The present study extends upon the above
features of the BioPrint model with the novel element of in sili-
co bioactivity spectra. Reviews summarizing the current state
of computational toxicology have also recently been pub-
lished.[35,36]

In the main part of the present study a three-fold analysis of
preclinical profiling data, adverse effect annotations, and mo-

862 www.chemmedchem.org F 2007 Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim ChemMedChem 2007, 2, 861 – 873

MED A. Bender et al.

www.chemmedchem.org


lecular structures is performed. Firstly, based on the Novartis
in-house data and an external database, world of molecular
bioactivity (WOMBAT),[37] in silico probabilistic models for the
panel of preclinical profiling targets have been built (PSP
model). The objective of this model is the fast, computer-aided
prediction of adverse target affinities during hit prioritization
and the routine annotation of HTS screens and it is based on
the concept of molecular similarity—that similar compounds
possess similar properties.[38] Our models attempt to predict ac-
tivity against the targets in the panel without testing them in
vitro, and this kind of general target prediction effort, which
can be used to gauge both on-target and off-target effects
(against any kind of target for which ligands are known), has
also been the subject of recent interest.[39–41] Secondly, based
on adverse drug reactions annotated in the world drug index
(WDI, Thomson Scientific) a model for drug side-effects was
built (ADR model) which does not require any underlying func-
tional knowledge about targets or pathways involved in ad-
verse reactions. Drugs currently on the market (acetylsalicylic
acid, Benperidol) and their predicted side-effects were com-
pared to known adverse reactions, as were those of com-
pounds recently withdrawn from the market (Rapacuronium,
Suprofen).
In addition, several other aspects of the models were investi-

gated; the similarity of ligands showing one particular activity
in the PSP model were compared to those of all other activity
classes. This paves the way for establishing class-imminent (as
opposed to chance) off-target effects. For Benperidol, an anti-
psychotic, our predicted adverse reactions were compared to
those predicted by the in vitro BioPrint[32] method. The inter-
pretability of model features is discussed on a set of com-
pounds causing arrhythmia.
Finally, methodologically novel efforts were made to com-

bine the PSP target and the ADR effect model. By doing so,
the previously established separate links between chemical
structures on the one hand and PSP targets or ADR effects on
the other hand are joined by the common activity models for
both. This process is shown in Figure 1. Target activities and

adverse drug reactions are merged by the common language
of chemical structures and generalized models derived from
them. By comparing how similar models for PSP targets and
ADR effects are, we are able to establish predictivity of individ-
ual targets for the prediction of side effects. We discuss various
utilities of the new model and demonstrate the predictive
value of the combined methods by using the m opioid and
muscarinic M2 receptors as well as cyclooxygenase-1 (COX1)
and their associated ADRs.

Results and Discussion

Predictive model for preclinical profiling targets

Results from the PSP model are shown in Figure 2 and Table 1.
Averaged over all targets, 92.9% classification accuracy for the
whole set is achieved in a tenfold random training/testing of
the model using 10% holdout sets. In some cases 100% of the
compounds binding to the receptor are detected (beta3, GR,
PDE6, PR-B), with some exhibiting rather high selectivity
(beta3: 46.7% and GR: 70.3%) and some a larger number of
false-positives (selectivity PDE6: 4.5% and PR-B 7.9%). Sensitivi-
ty defines the percentage of true-positives detected and selec-
tivity defines the fraction of positive predictions which are in
fact positive data points. Given that on average 92.2% of the
active compounds are correctly identified (achieving good sen-
sitivity; at the expense of some false-positives) the model is
able to identify most of the compounds found to be active in
vitro. This is an advantageous situation compared to having
high selectivity combined with low sensitivity. The latter case
would lead to a larger number of false-negative predictions
and the possibility of failing to set some red flags for some po-
tentially suspect compounds.

Predictive model for adverse drug reactions

Results from the ADR model are shown in the Supporting In-
formation. Averaged over all adverse reactions, 91.7% classifi-
cation accuracy for the whole set is achieved, at a selectivity of
41.5% in a tenfold random training/testing of the model using
10% holdout sets. On average 90.3% of the compounds show-
ing each particular side-effect are correctly identified at a selec-
tivity similar to that achieved with the PSP model. In some
cases 100% of the compounds showing a particular side-effect
are identified, which are magnesium disorder, premature epi-
physeal closure, adrenopathy, hiccup, nystagmus, vocal chord
spasms, vaginitis, and enamel hypoplasia. All sensitivities are
larger than at least 70%, with the lowest value achieved for
high cholesterol (70.45%). As mentioned before, because of
the multifactorial nature of endpoints a wide variety of effects
other than the drug might contribute to high cholesterol, such
as dietary and other habits. As before, the ADR model enables
the user to flag most of the compounds which show the need
for further in vitro testing, which we did not necessarily
expect, particularly as they are generally not caused by single
mechanisms only. On the other hand, the Bayes model applied
here is able to incorporate separate submodels into the full

Figure 1. Linking adverse drugs reactions to targets is performed in two
steps. Firstly, individual models linking molecular structure to targets, and
models linking molecular structure to adverse drug reactions are generated.
Target models are built on activity data, such as from the WOMBAT and in-
house databases, and ADR models are built on as side-effect annotations
from the World Drug Index. In a second step, similarity between the models
of targets and adverse reactions are established, in effect establishing rela-
tionships between activities and adverse reactions by the generalized struc-
ture–activity and structure–adverse reaction models.
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knowledge base for a given adverse reaction, corresponding,
for example, to different pathways leading to the same ad-
verse reaction, which seems to be of importance here.

Case study: Benperidol

Sample predictions of the ADR model for Benperidol are
shown in Table 2. Here as in the following examples the com-
pounds listed were not involved in training of the model. Ben-
peridol is an antipsychotic agent whose observed side effects,
predicted side effects from the ADR model, and those adverse
reactions predicted by the BioPrint[32] approach are shown. De-
scribed briefly, the BioPrint approach tests in vitro, the affinity
of the compound in a panel of target proteins. This affinity fin-
gerprint serves as a similarity measure for compounds with
known side effects from a database. Twenty similar com-
pounds were identified this way, and their known adverse ef-
fects were used to make predictions of the side effects for Ben-
peridol.[32] Of the side effects reported in the BioPrint publica-
tions and an additional source[42] virtually all side effects ob-
served are predicted correctly by the ADR model. This is also
true for some ADRs missed by the BioPrint approach such as
nasal congestion and sexual disorders. It should be mentioned
that the side-effect annotations in the WDI and the BioPrint
database do not use the same terms in each case. The general-
ized terms in our work would be flu like symptoms and impo-
tence.
Predictions of the PSP model for Benperidol are as follows

(BioPrint predictions based on the activities of nearest neigh-

bors[32] in parentheses and matches between BioPrint and the
method presented here in bold):
H2 (Histamine plus H1 in BioPrint work)
a1, a2a (plus nonspecific a)
b2 (nonspecific b)
opioid-m (d, nonspecific opioid)
opioid-k (d, nonspecific opioid)
Ghrelin receptor
5HT2A
D2, D3, D4
hERG K+ Channel
In addition, BioPrint predictions include inhibition of seroto-

nin reuptake and inhibition of hemozoin formation as well as
KCa and sarcoplasmic Ca2+ release,[32] which were not included
in our model and could thus not be predicted. Again, overall
good agreement of binding predictions on this sample com-
pound can be observed. Combined with the cross-validation of
both the PSP and the ADR model presented above we are con-
fident that in silico safety pharmacology models, such as the
ones presented herein, can add value in holistically assessing
the quality of a potential drug candidate in a facile, predictive,
and relatively low-cost way.

Sample predictions of adverse reactions: the cases of acetyl-
salicylic acid, Rapacuronium, and Suprofen

A sample set of drugs was recently presented[43] which were
withdrawn from the market because of adverse side effects,
where the reasons for withdrawal include primary pharmacolo-

Figure 2. Sensitivity (black line), selectivity (gray line), and percent correct (broken line) predictions for the 70 targets in the PSP panel with 10% holdout sets.
Overall compounds which bind to each target are detected at better than 80% sensitivity, with the average across classes being 92.9%, at an average selec-
tivity of 31.8% and 20.9% of all compounds classified correctly.
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gy issues, secondary pharmacology problems, and organ toxic-
ity. Adverse reactions of two of the compounds are discussed,
Rapacuronium and Suprofen, as are the ADRs of acetylsalicylic
acid (with about 60000 tons per year, the world’s most widely
used drug as measured by weight).
Acetylsalicylic acid belongs to the group of nonsteroidal

anti-inflammatory drugs and is applied to the symptomatic
relief of various pains (head, muscles, teeth, menstrual pain)
and as an antiarthritic compound. Its inhibition of platelet ag-
gregation renders it in low doses a prophylactic compound to
reduce the risk of myocardial infarcts. Primary targets are the
cyclooxygenases (unspecific, subforms 1 and 2) involved in
prostaglandin synthesis. The most profound adverse reactions
observed are gastrointestinal problems comprising ulcerations,
abdominal bleeding and gastritis, tinnitus, cramps, nausea,
rash, liver and kidney toxicity, and vertigo (Table 3). Among the
predicted adverse reactions (Table 3, right hand side column)
the prediction of CNS depressant effects on position one (out
of about 140) might be surprising, but there are signs that in
addition to inhibiting cyclooxygenase, acetylsalicylic acid also
has CNS activity.[44] CNS toxicity has also been established,[44]

providing some support for the prediction. Gastrointestinal
bleeding is predicted as the second most likely adverse reac-
tion which is fully supported by evidence.[45] Hypotension has
been reported in conjunction with the compound, but mostly
in hypersensitive patients. The prediction of tinnitus as a side
effect is interesting—it is a well established side effect, where
involvement of the protein prestin is suspected.[46] Speaking
more generally, the analysis of datasets in the current form is
able to establish statistical molecular feature–adverse reaction
relationships, hopefully also facilitating the elucidation of un-
derlying mechanistic frameworks.
Rapacuronium is a short-acting neuromuscular blocking

agent which, until its withdrawal from the market, was em-
ployed in operations during intubation. The reason why it was
withdrawn from the market was its tendency to induce bron-
chospasms, which is thought to be due to M2 antagonism
without simultaneous M3 antagonism which leads to the ex-
cessive release of acetylcholine. Apart from this main adverse
reaction, arrhythmia, vomiting and nausea, several typical chol-
inergic and anticholinergic reactions (increased saliva flow, hy-
pothermia, urinary retention) and other effects are also ob-

Table 1. Prediction performance of the 10-fold random validation of the PSP model.[a}

CLASS Sensitivity Selectivity % Correct CLASS Sensitivity Selectivity % Correct

5-HT1A 87.61% 63.25% 93.48% ET-B 99.52% 74.25% 98.85%
5-HT2A 90.05% 34.92% 89.01% GABAA 96.71% 47.50% 97.65%
5-HT2B 95.80% 13.24% 85.68% GABA-B 98.68% 24.15% 98.94%
5-HT2C 92.28% 29.65% 91.51% GL-R 94.92% 19.28% 96.60%
5-HT3 95.27% 33.97% 94.28% GR 100.00% 70.30% 99.37%
5-HT5A 95.56% 7.61% 97.63% H1 90.70% 27.25% 92.41%
5-HT6 96.11% 5.91% 86.61% H2 95.73% 21.93% 90.67%
5-HT7 87.22% 13.57% 92.06% H3 88.91% 71.48% 98.27%
5-HTT 89.15% 59.17% 94.87% hERGRLB 95.70% 27.03% 91.84%
A1 99.08% 78.62% 97.34% m1 88.24% 60.29% 96.64%
A2A 93.60% 58.95% 95.55% m2 88.91% 51.28% 96.24%
A3 88.65% 42.69% 92.05% m3 88.07% 57.09% 97.42%
alpha1 81.48% 46.19% 91.91% m4 96.40% 21.25% 94.11%
alpha2a 97.02% 11.18% 87.68% m5 94.88% 18.55% 94.23%
alpha2b 93.58% 10.59% 89.89% MC3R 86.22% 11.60% 87.99%
alpha2c 95.05% 11.81% 88.57% MC4R 82.31% 19.91% 91.17%
ANT 89.33% 6.10% 95.29% MTL-R 90.40% 12.46% 97.42%
AT1 96.80% 74.46% 98.10% nAChR 93.09% 61.32% 97.40%
beta1 98.00% 40.07% 98.48% NET 90.59% 30.96% 90.19%
beta2 92.96% 20.59% 95.19% NK1 84.90% 55.52% 96.29%
beta3 100.00% 46.68% 99.44% NK2 83.55% 42.89% 97.15%
BKB1 95.12% 7.37% 94.43% NMDACh 95.72% 69.37% 97.39%
BKB2 99.35% 75.29% 99.42% NPY1-R 91.56% 7.11% 89.35%
CCKA 97.01% 68.04% 98.31% NPY2-R 87.13% 4.52% 92.84%
CCKB 97.81% 78.71% 98.97% NT1 87.74% 3.46% 94.11%
COX-1 99.04% 62.40% 97.58% opioid-d 90.94% 60.40% 94.22%
COX-2 98.31% 74.79% 98.18% opioid-k 82.40% 54.14% 93.86%
D1 89.80% 21.61% 89.35% opioid-m 86.25% 63.13% 93.68%
D2 87.83% 55.17% 90.70% PDE3 94.58% 51.35% 97.54%
D3 88.71% 24.72% 87.08% PDE4D 96.64% 4.49% 88.91%
D4.4 97.53% 7.86% 89.50% PDE6 100.00% 6.43% 94.01%
D5 98.73% 4.64% 92.78% PR-B 100.00% 7.88% 97.83%
DAT 84.15% 83.97% 96.97% TXA2 95.93% 14.18% 93.82%
ERbeta 99.89% 50.14% 98.01% V1a 93.01% 29.37% 97.31%
ET-A 99.20% 96.64% 99.80% V2 99.42% 59.84% 98.95%

[a] Whereas some of the classes are not predicted well, overall on average 92.2% sensitivity and 31.8% selectivity per class are achieved, in effect classify-
ing 92.9% of all compounds correctly.
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served (for a full list see Table 3). The predicted adverse reac-
tions that feature most prominently in the list are indeed the
ones related to the respiratory system, such as asthma, apnea,
and bronchospasms. Interesting is the proposed association of
this compound with priapisms (abnormal, long-lasting erec-
tions without sexual stimulation). Looking at the training set
compounds, it can be seen that corticosteroids and steroids
such as testosterone are known to be associated with this re-
action, making the prediction understandable. Arrhythmia fea-
tures in the list of predicted adverse reactions, which is also in
agreement with observations.
Suprofen, an inhibitor of prostaglandin biosynthesis, was ad-

mitted to the market based on its superior potency, compared
to similar drugs such as ibuprofen.[47] It was withdrawn be-
cause of increased incidence of flank pain syndrome associated
with renal dysfunction and is currently only available as a local
agent in ophthalmics. Predicted adverse reactions include in
the top position general kidney damage, in agreement with
the observed effect, but also gastrointestinal bleeding, sleep
disorder, tinnitus, and other effects.
The examples shown underline the value of the models in

early drug discovery stages where red flags can be used as an
early indicator for follow-up or prioritization for further experi-
mentation. Given that the effort to annotate compounds is

minimal, the method presented here represents a quick yet
powerful way to annotate large compound collections such as
virtual libraries without performing in vitro studies in each in-
stance.

Correlations between PSP targets

The between-group similarities between the whole sets of li-
gands binding to each of the 70 PSP targets are shown in
Figure 3. The higher the similarities, the higher the propensity
for ligands hitting one target to also bind to the second
target. Only a small number of observations shall be discussed
here, as further analysis is still being undertaken. Generally,
chemical features associated with binding are more similar
within target families, as compared to chemical features associ-
ated with binding to completely unrelated targets. This can be
observed for virtually every target family, the 5HT receptors,
adenosine receptors, alpha and beta adrenoreceptors (but only
separately, not for the whole class of adrenoreceptors), dopa-
mine, histamine, muscarinic, and the group of opioid recep-
tors, to capture just the largest classes. This finding is in agree-
ment with a recent publication[48] and it can be seen as a kind
of first principle of chemogenomics: just as protein sequences
are related, small molecule bioactivities are as well. The similar-

Table 2. Predicted adverse reactions for Benperidol by the ADR model, compared to experimentally observed adverse reactions and the BioPrint model.[a]

Name Structure Desired Target/
Action

Known adverse drug re-
actions

Predicted adverse reaction BioPrint predictions

Benperidol Dopamine D2
Receptor

hypotension
postural hypotension
tachycardia
somnolence
akathisia
dyskinesia
tardive dyskinesia
dystonia
extrapyramidal symp-
toms
neuroleptic malignant
syndrome
oculogyric crisis
opisthotonos
torticollis
constipation
dry mouth
urinary retention
hypothermia
EEG abnormalities
convulsion
gynecomastia
galactorrhea
rhinitis
weight gain
cholestatic hepatosis
hypersalivation
blood dyscrasias
amenorrhea

movement_extrapyramidal_disorder
12.32
general_parasympatholytic_effects 11.2
movement_parkinsonism 10.01
female_organs_breast_problems 5.59
reproductive_system_impotence 3
body_temperature_decreased 2.95
female_organs_menstrual_disorder 2.83
urinary_tract_diminished 2.76
bodyweight_gain_increased_appetite
2.67
earnosethroat_flu_like_symptoms 2.64
skin_dermatitis 2.61
reproductive_system_general_disorder
2.52
heart_downregulation_hypotension_
bradycardia 2.51
oral_tract_dry_mouth 2.5
heart_general_arrhythmia 2.38
liver_damage_jaundice 2.35
skin_phytosensitivity 2.21
eyes_miosis_mydriasis 2.21
gi_constipation 2.13

hypotension
postural hypotension
tachycardia
somnolence
akathisia
dyskinesia
tardive dyskinesia
dystonia
extrapyramidal symp-
toms
neuroleptic malignant
syndrome
oculogyric crisis
opisthotonos
torticollis
catatonic reaction
constipation
dry mouth
urinary retention
hypothermia
EEG abnormalities
convulsion
gynecomastia
galactorrhea
rhinitis

[a] Bayes scores for each ADR are also shown. Of the side effects reported in the BioPrint publications and an additional source (www.netdoctor.co.uk) vir-
tually all side effects are predicted correctly by the ADR model. This is also true for some ADRs missed by the BioPrint approach such as “nasal congestion”
and “sexual disorders”. As a result of different nomenclature, these effects are captured as “impotence” and “flu like symptoms” by our method.
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ities of ligands of unrelated targets present more novel find-
ings. For example, monoamine transporters such as the seroto-
nin transporter (5-HTT), dopamine transporter (DAT), and nore-
pinephrin transporter (NET) share considerable similarity
among their ligands. Histamine ligands and small molecules
blocking the hERG potassium channel are similar and indeed
antihistamines were found to cause arrhythmia to which hERG
blocking seems to contribute.[49] Whereas off-target effects of
compounds are often treated as individual properties of mole-

cules, the analysis of datasets as performed here seems to hint
at a group property of the whole class of antihistamines: as a
group, they share features linked to hERG binding, therefore as
a group they are more likely to show this off-target effect.
The analysis of multiple activities, relating to the question

which multitarget drugs (combinations of targets) are more
feasible to be targeted simultaneously than others, has also
been subject to further analysis.[50]

Table 3. Prediction of the adverse effects three compounds, acetylsalicylic acid, Rapacuronim and Suprofen, along with observed adverse reactions.[a]

Name Structure Desired Target/Action ADR leading to Withdrawal
(where applicable)

Known adverse drug reac-
tions

Predicted adverse reaction

Acetylsalicylic
acid

Depending on action
COX (unspecific) or un-
known

n/a GI problems (ulcerations,
abdominal burning, bleed-
ing, gastritis)
ringing in the ears
pain
cramping
nausea
rash
liver toxicity
kidney impairment
vertigo

cns_depression 2.82
gi_bleeding 2.59
heart_downregulation_hy-
potension_bradycardia
2.24
hearing_tinnitus 2.22
sleep_disorder 2.15

Rapacuronium Nicotinic receptor
blocker ; short-acting
neuromuscular block-
ing agent for intuba-
tion

Bronchospasm (M2 antago-
nist without M3 antago-
nism leads to excessive re-
lease of acetylcholine)

fever
hypothermia
hypertension
arrhythmia/extrasystoles/
tachycardia
ileus
increased saliva flow
rigors
back/chest pain
thrombosis
cerebrovascular disorder
broad range of respiratory
disorders
(hypoxia, apnea, pneumo-
thorax, laryngismus)
injection site reaction/pain
increased sweating
prolonged neuromuscular
block
prolonged anesthesia
emergence
muscle disorders
(hypothesia, hemiparesis,
hypertonia)
vomiting/nausea
skin disorders (edema,
rash, pruritis)
post-operative bleeding
urinary retention

lungs asthma 122.77
lungs apnea 35.03
reproductive system
priapism 23.73
lungs bronchospasms
11.08
reproductive system ova-
ries 7.33
muscles paralysis 6.77
reproductive system ma-
le organs 5.6
bones premature epiphy-
seal closure 3.66
mutations other 3.03
cns depression 2.58
heart general arrhythmia
2.35
heart downregulation hy-
potension bradycardia 2.3
metabolism nitrogen
creatinine 2.3
gi biliarytract disease 2.2

Suprofen n/a Flank pain syndrome, renal
dysfunction, uric acid se-
cretion

n/a kidney damage general
2.54
gi bleeding 2.46
sleep disorder 2.44
hearing tinnitus 2.28
urinary tract frequency
2.18
skin phtosensitivity 2.11
gi constipation 2.06
general malaise 2.03

[a] Acetylsalicylic acid is the most consumed drug in the world today (about 60000 tons/year) whereas Rapacuronium and Suprofen have been withdrawn
from the market because of bronchospasms and renal failure, respectively.
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Figure 3. Similarities between whole activity classes, here the 70 targets used in preclinical profiling. Red colors indicate high class-similarities, whereas green
colors show low similarities. Similarity is determined by the Pearson correlation of normalized feature probabilities in each Bayesian model (see Experimental
Section). Receptor families share ligand similarity, but also groups such as antihistamines (H1 receptor) and hERG blockers, which is in agreement with the ar-
rhythmic effect this class of compounds possesses.
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Linking targets and adverse reactions: adverse reactions as-
sociated with the muscarinic acetylcholine receptor 2 (M2
receptor), the m opioid receptor, and cyclooxygenase-1

Whereas up to this point only findings within either preclinical
profiling space or adverse drug reactions space have been pre-
sented, we will investigate the intersection of both spaces.
The relationship between the 166 ADR effect classes and the

70 PSP panel proteins is depicted in the upper left hand
corner of Figure 4. The larger the similarity between the model
for an adverse reaction and a target class, the more likely the
two are to be related. Similarity reflects overlap in chemical
substructures correlated with binding or activity. As the infor-
mation content of this full matrix is huge, only a small number
of observations shall be analyzed further, namely those ten
classes of adverse reactions which were most often associated
with the muscarinic acetylcholine receptor 2 (M2 receptor), the
m opioid receptor, and cyclooxygenase-1.
For the m opioid receptor, the most associated adverse reac-

tions are (in this order) dependence, emotional disorder and

depression, death, muscle cramps, hypotension and bradycar-
dia, pruritus, nausea, respiratory disorder, elevated body tem-
perature, and GI/biliary tract disease. Opioids such as morphine
or heroine are highly addictive and their side-effect profiles are
well established, and indeed the adverse reactions have all
been observed.[51]

The adverse reactions most often associated with the mus-
carinic M2 receptor[52] are shown in the center column of
Figure 4. Dry skin is also a typical anticholinergic reaction[52]

and might be involved in the transport of agents necessary for
wound healing. Dry mouth is also typical for compounds of
this class[52] which is a possible explanation for the difficulty in
swallowing. Muscarinic stimulation of the CNS is well establish-
ed as is its cause of constipation.[52] Muscarinic M2 receptors
are expressed in the visual cortex, interference of which leads
to effects such as the observed eye irritation, hypertension,
and visual disorder.[52] Involvement of the M2 receptor in tera-
togenic effects is in fact a suggestion made quite recently,
when the teratogenic effect of toluene was explained by inhib-
ition of muscarinic receptor mediated cytosolic Ca2+ response

Figure 4. Adverse drug reactions predicted to be associated with the muscarinic M2 and the opioid m receptor, as well as cyclooxygenase-1. In this case, all
side effects predicted to be associated with this receptor could be corroborated by literature studies. Used in a prospective manner, novel target/ADR links
can also be established. Some of the links have indeed only been published quite recently.
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in neural precursor cells.[30] One of the main effects associated
with COX-1 inhibition, is its effect on blood clotting.[53] Indeed,
many of the effects statistically most profoundly associated
with this target are related to this effect. As shown in Figure 4,
excessive bleeding and gastrointestinal bleeding are directly
associated with COX-1 inhibition.[53] Other GI effects are also
found to be related, namely ulcers and colitis. The next cluster
of side effects are skin reactions, here the cluster includes er-
ythema/Stevens Johnson Syndrome/necrolysis and dermatitis.
Both PGE2 and PGI2 are involved in the development of inflam-
matory erythema.[53] In anemia, bleeding times are increased,
which is also observed in the case of COX-1 inhibition. Prosta-
glandins are known to influence bronchial tone and blood
vessel constriction and dilation, depending on the particular
prostaglandin. Thus, the effects of water in the lungs and
asthma can be explained, as raised levels of bronchoconstrictor
PGs in the lungs may contribute to allergic bronchospasm
during asthmatic attacks.[53] The overall influence on asthma is
unclear though and may depend on isoform selectivity.[53]

There seems to be an influence of COX inhibition on the devel-
opment of pancreatitis as the protective effect of hepatocyte
growth factor is diminished.[54]

Overall, good agreement can be found between predicted
side effects and the literature on targets we examined. This is
particularly interesting, given that some of the experimental
findings are from recent years; thus the method should also
enable us to make prospective predictions of links between
targets and adverse reactions.
In addition to binding to particular receptors, the ligand

needs to be partitioned in the particular body compartment,
so its pharmacokinetic properties also play a role as to whether
a side effect is observed or not. This point is not yet addressed
explicitly in the model, although implicitly all structural proper-
ties statistically associated with a particular property are con-
sidered by the model, including pharmacokinetic properties. A
limitation of this is the descriptor chosen, which may not cap-
ture all structural properties which define pharmacokinetics in
its entirety.

Interpretation of the arrhythmia model

One strength of the current method is that features in the
models are back-mappable onto test structures. For example,
by employing the ADR model, features statistically associated
with causing adverse drug reactions can be identified. This can
be seen as an analogy to pharmacophore elucidation, where
features responsible for receptor binding are identified. Here,
as adverse drug reactions are rarely based on a single mecha-
nism, empirical toxicophores for adverse drug reactions can be
analyzed. Figure 5 shows a sample analysis for drugs causing
arrhythmia. 763 out of the 3,355 compounds taken from the
world drug index belong to this category. It can be seen that
different classes of fragments are associated with drugs caus-
ing arrhythmia, including fragments containing nitrogen het-
erocycles, organophosphorous moieties, and also differently
branched hydrocarbon scaffolds. A typical example for com-
pounds containing the thiomorpholine substructure (first frag-

ment) is the antipsychotic compound chlorpromazine, which is
an antagonist of the D2 receptor and which is known to pro-
long the QT interval.[55] The seven-membered nitrogen cycle
for example, is found in antidepressants such as the family of
imipramines, for which arrhythmic effects are also well estab-
lished.[56] Finally, the organophosphorous fragment is a fre-
quent substructure of suicide acetylcholinesterase inhibitors,
which are known to cause arrhythmia in vivo.[57] Therefore,
consistent models between empirically derived features, tar-
gets, and adverse drug reactions can be derived, which in the
simplest case as given here, establishes one-to-one relation-
ships between adverse effects and targets. Information of this
type can be used both for the annotation of compounds and
the design of ADR-relieved libraries for screening.
The analysis between PSP models can also be used in a dif-

ferent way, namely by subjecting the correlation between PSP
models to a principal component analysis (PCA). This is shown
in Figure 6. The distance and direction of each assay from the
coordinate origin depicts the correlation (or orthogonality) be-
tween the different target panel proteins. Proteins which
behave similarly point into similar directions in space. Orthogo-
nal proteins (affinity to one target increases whereas it de-
creases for the other for two adverse drug reactions) point
into orthogonal directions. Opposite directions indicate anticol-
linear behavior. It can be seen that many of the panel proteins
share information content. Interestingly the 5HT and M families
have very similar loadings on the first principle components,
along with the alpha adrenoreceptors. On a coarse-grained
scale, dopamine, muscarinic, and serotonin receptors can be
classified as sharing information content (because of shared
substructures between the models responsible for activity).
This is not given for example between the alpha and beta
adrenergic receptors. Interestingly the lower left-hand direction
of the plot is empty, meaning that no panel protein behaves
orthogonal to for example, the adenosine family (A1, A2A) or
the endothelin receptors. By incorporating novel receptors in
this kind of plot, voids can potentially be filled and receptors
which behave very similarly can be removed (ongoing work).
One should be aware though that only 35% of the explained
variance is depicted in two dimensions, with 24 eigenvectors
needed to explain 90% of the variance, indicating that higher
principal components will in most cases contain additional in-
formation.
PCA combined with a suitable categorization of PSP profiles

can be employed to construct an information-optimal panel of
PSP target proteins where adverse effect-related information is
identified by the smallest possible number of macromolecular
targets. Alternatively, targets in the preclinical profiling panel
can be chosen to confer maximum information at a given size,
or at least, to prioritize targets for testing when resources are
limited. Looking forward, this analysis can also be performed
on targets which are not being considered for safety profiling
yet and those which are predicted to be most associated with
adverse reactions may potentially be very useful supplements
for pharmacological safety studies in the future.
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Conclusions

In this work, novel and prospective steps towards a better un-
derstanding of adverse drug reactions and the computer-aided
flagging of compounds with undesirable side effects were per-
formed. For both a panel of preclinical profiling targets and ad-
verse reactions, in silico models were validated which can be
used for prioritizing compounds and routine compound anno-
tation.
By combining both models, adverse reactions and targets

can be linked, and examples for the muscarinic M2, the m

opioid receptors, and cyclooxygenase-1 were given. Previous
studies cited provided support for the links between targets
and adverse reactions. Given that a good part of these links
was established recently, it is hoped that novel, prospective re-
lations can also be inferred by this route (Figure 1).
In addition the information linking adverse effects and PSP

activity predictions can be used to examine the information
content contained in the PSP panel, suggesting an informa-
tion-optimal panel of targets which gives the maximum infor-
mation possible at a given panel size (or alternatively the
smallest possible panel at a given information threshold).

The in silico models of adverse reactions and understanding
of receptor systems developed in the current study are valua-
ble tools for early compound profiling. It is hoped that future
work in this area will contribute to reducing late-stage failures
in drug discovery and development significantly.

Experimental Section

PSP Dataset and Model
The PSP dataset contained 100269 data points for 70 targets ob-
tained from the WOMBAT and the Novartis in-house databases (for
details see Table 1 of the Supporting Information). Compounds
were defined as active at a quantitative annotation (Ki/IC50) less or
equal than 10 mm and inactive without this annotation (thus in-
cluding both experimentally determined inactives and missing
data points, or presumed inactives). The size of the datasets differs
greatly from 4890 ligands of the dopamine D2 receptor to 68
blockers of the Gestagen receptor. No filter was used to control
the size of the dataset to incorporate as much knowledge into the
models as possible. Molecules were standardized in PipelinePilot
5.1[58] employing the options StandardizeStereo and Standardize-
Charges. For details on the model generated see a recent publica-
tion on chemogenomics approaches for the prediction of drug-tar-

Figure 5. Structural features empirically found to be correlated with arrhythmia. Substructures such as scaffolds found in antipsychotic compounds, pure
carbon scaffolds at different saturation levels and nitrogen heterocycles were found to belong to this category of proarrhythmic compounds. As no underly-
ing mechanistic assumption is necessary multiple submodels (mechanisms) can be contributing to a single model. Sample structures are mentioned in the
text.
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gets[39] which can be seen as a PSP-like model trained on all targets
present in a given database. For more recent target prediction
studies using 3D descriptors[40] as well as a review on the topic[41]

the reader is referred to the literature. A multicategory Bayes
model was generated employing ECFP_4 fingerprints[58] and rela-
tive Bayes scores of larger than one were interpreted as being pos-
itives in the model predictions. Circular fingerprints such as those
employed in the current study have been shown to perform well
in comparative ligand-based virtual screening studies[59,60] and thus
they can be expected to convey a large amount of information rel-
evant to biological activity.
ADR Dataset and Model
To analyze adverse drug reactions 48,509 data points representing
3,355 compounds were extracted from the WDI. After streamlining
the ADR list for repetitive appearance and spelling errors we ob-
tained 462 distinct adverse reactions. For example, the term “hy-
persensitivity” was encountered in the database as “hypersensitivi-
ty”, “Hypersensitivity”, “HYPERSENSITIVITY”, “hypersensitivity.”, “Hy-
persensitivity.”, “hypersensitivity (R)”, “hypersensitivity (discon-
tinue)”, “hypersensitivity (eye-drops)”, “hypersensitivity (possibly-
fatal)”, “hypersensitivity (topical-use)”, “hypersensitivity-reactions”,
“Hypersensitivity-reactions.”, “hypersensitivity-reactions.”, “hyper-
sensitivity reactions”, and “hyperstimulation-syndrome”. Further se-
mantic normalization (for example, merging ‘itching’ and ‘pruritus’)
this number was reduced to 166 side effects. The data subsets con-
tained between 4,094 data points in case of general skin reactions
and 13 members in case of hypoplasia (damage to teeth enamel).
Details are given in Table 2 of the Supporting Information for the
largest ADR classes. Despite the range of dataset sizes, like the PSP
dataset, we chose to include all of the compounds in the study to
incorporate as much knowledge into the models as possible. Multi-
category Bayes models were trained as described for the PSP data-
set.

Principal Component Analysis
Principal Component Analysis
(PCA) was performed using Spot-
fire.[61]

Inter-Class Similarity
For any pairing of PSP target and
ADR, the similarity between the
two was established by computing
the Pearson correlation between
the normalized feature probabili-
ties from the individual Bayesian
models. Only the 10,000 most fre-
quent features of each individual
(ADR/PSP) model which were also
present in both model sets were
used. This step was found to im-
prove the overlap of chemical sub-
structures between the ADR and
PSP datasets which otherwise
would cover very different areas of
chemical space. Correlations were
normalized per ADR, that is, every
adverse reaction was assigned the
same overall probability, with dif-
ferent distributions of correlations
over the PSP targets. In contrast to
the approach of comparing targets
on the basis of their overlap in
small-molecule inhibitors,[62] deter-
mining similarity via statistically-
correlated features allows one to

determine target-target or target-ADR similarity even when no
exact chemical structures are in common between datasets. In
other words, only important substructures of compounds need to
be shared between two targets to find similarity. This is important
because data from pooled sources do not contain a complete ex-
perimental matrix of all compounds tested against all targets.
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